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In transpiration cooling of various structural elements in gas tur-
bines, the coolant has to be ducted within passages to the porous walls
through which it is ejected into the gas stream. The passages, often
arranged in rotating parts, have to be designed in such a way as to en-
sure the proper local distribution of the coolant. In this report, a “
method is presented by which either the local permeability necessary for
a prescribed distribution of the coolant flow or the coolant-flow dis-
tribution resulting from a prescribed local permeability can be predicted.
The method is based on a one-dimensional treatment of the gas flow through

q
a rotating channel with vszying cross section and partially porous walls.
The inlet pressure into the channel and the outside pressure along it are

03
u assumed prescribed. It is also stipulated that the passege ends blindly.

However, the method can easily be extended to cover the situation where
. a certain mass flow leaves the open end of the passage.

The methcd was applied to a determination of conditions in rotating
# turbine blades with transpiration-cooledwalls. The cooMng ati is as-

sumed to flow from the blade root through several channels to the porous
skin of the blades. For prescribed coolant-flow ejection rates necessary
to maintain a constant porous well temperature, considerable reduction
in wall permeability from passage entrance to passage tip (blade root to
blade tip) is required. b fact, such requir- v=iations W~ be ex-
tremely difficult to fabricate, and compromises between prescribed wti
temperature and coolant-flow e~ection may be necessary. For prescribed
locally constant permeability, the mass-flaw ejection rate increased from
blade root to blade tip. The relative increase along the blade became
smaller when the Inlet pressure of the coolant at the blade root was in-
creased. A large inlet pressure is therefore conducive to a uniform flow
ejection rate and, accordingly, a more uniform blade WSXL temperature.
b the investigated range, a pass%e area v=iation had practica~y no
effect on flow e~ection rates. For low Mach numbers at the passage inlet
(below approximately 0.2 in the exq?les), the fitern~Press~e ~stri-
bution may well be approximated by consideration of rotational effects

. Ody . This leads to a considerable simplification in the calculation
procedure.

~
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.

INTRODUCTION

.

Transpiration cooling is considered as an effective means of keeping
8

different structural elements in gas turbines at a temperature level suf-
ficiently low for the material from which the elements are fabricated.
Application of this cooling method is considered, for instance, for cool-
ing the walls of combustion chambers and of rotating turbine blades. In
both cases, passages have to be provided within which the coolant is
ducted to the porous surfaces before it is finally e~ected into the gas
stream.

zm
When transpiration cooling is applied @ the rotating blades of the m

gas turbine, these passages will have to be arranged in the interior of
the blade, for instance, as indicated in figure 1. The passages are
closed at the top of the blade, and the cooling air leaves the passages
through the porous blade surfaces. The flow of the cooling ah through
each of the passages is subject to friction forces along the passage
wall, to centrifugal forces that tend to increase the pressure from the
blade root towsrds the blade tip, and to pressure changes connected with
the change in momentum of the cooling air on its way along the passage
interior. The problem arises as to what local permeabilities along the
passage are required to ensure a certain flow distribution or what the
local flow distribution of the cooling ah wXL1 be as it passes the po-
rous surface with prescribed permeability and is ejected into the gas
stream. In both cases, the calculation is complicated by the fact that
the pressure outside the blade varies locally in radial direction as well
as around the blade circumference.

—--.

A proper design of the blade requires the ability to predict the
local flow rates through the porous blade walls. It is the purpose of
this report to present a method by which the flow through passages with
porous walls of the form indicated in figure 1 may be calculated. The
method is based on a one-dimensional.treatment of the flow and is essen-
tially the same as presented in references 1 and 2. It is, however,
especially adapted.to the problem under investigation. The basic equa-
tions necessary for a solution’ofthe problem are derived at first in a
general way, so that they can be applied generally to calculate flow
conditions in rotating
the special conditions
procedure is discussed
rameters affecting the
numerical solutions.

passages. These equations sre then adapted to
expected in gas turbine blades. The calculation
in detail, and the importance of the various pa- — —
flow

The following symbols,

A cross-sectional (flow)

a slope of dimensionless

distribution is investigated in a number of

SYMBOLS

with consistent units, are used:

area of passage

temperature ratio, ‘c= 1 + a=

.
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length of porous section of passage measured in circumferential
direction

quantity containing permeability coeffIcient (see eq. (32))

dimensionless quantity containing permeability coefficient
(see eq. {17))

viscous-resistance coefficient

inertial-resistance coefficient

specific heat

( )hydraulic diameter of passage = cticti~=ence

friction coefficient

function

permeability coefficient (see eq. (9))

length of passage

Mach number at passage inlet

mass coolant flow

exponent

pressure

gas constant

radius to element

temperature of coolant

effective gas temperature

thickness of porous waU

-1

measured in plane of rotation (see fig. 1)
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flow velocity through porous well (based on total porous surface
area)

velocity of main flow through passage

distance from passage entrance (see fig. 1)

dimensionless area ratio, ~~

angle between velocity vector and dtiection of increasing radius

ratio of specific heats, 1.4

dimensionless coolant mass velocity ratio, (m~A)~(m~A)r

kinematic viscosity

dimensionless distance from passage entrance, x~L

dimensionless external pressure ratio, p~pi,r

dtiensionless internal pressure ratio> P~Pi,r

density

dimensionless temperature ratio, T/Trj except for Tw (shearing

stress at wall)

angular velocity

Subscripts:

e external

i internal

r root (passage entrance)

s considers rotating effects

w

o NACA standard.conditions

.

.
a—

‘a
Lo
to

—

only

Superscript:

! total condition

.

●
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ANhLYSIS

Derivation of Basic Equations

.

.

The basic equations used in this report are developed with the help
of figure 1. This figure shows .aportion of a channel, one wall of which
is porous. The channel may rotate around the axis 1-1 with the angular
velocity ah Attention is fixed on a portion of fluid between the cross
sections A and A + dA. This region is located at the distance r
from the axis 1-1, and the axis of the channel is incltied under an angle
P against the radial direction, where 13 is measured between the ve-
locity vector and the direction of increasing r. The flow through the
passage is assumed to be steady relative to the channel.

For steady-flow problems$ application of I?ewtonlssecond law of mot-
ion may be made by equating the net force acting on a control surface
and the body forces acting on the fluid particles within the control area
to the increase in momentum of the stream flowing through the stationary
control surface. In the preseut case this law must be applied to a ccm-
trol area that is at rest relative to the channel. In figure 1 such a
control sreais indicated bounded by the two cross sections A and
A+ dA and by a surface located in irmediate proximity to the inside
wall of the channel between the two cross sections. Forces acting in
flow direction on the control surface will be pressure forces in the two
cross sections and along the channel wall, friction forces acting along
the channel wall in the portion between the two cross sections, centrifu-
gal forces, and Coriolis-forces. The sum of all pressure forc& is

if the pressure
by pi + dp~2.

forces to

on the surface bounding the channel walls is approximated
19eglectingsecond-ord= terms reduces the pressure

- Adpi

When the friction factor f is defined by the equation

(Tw denoting the shearing stress at the wall), the friction force can

be expressed in the following way:
.

.
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Body forces, caused
can be written as
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.
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%~A

‘f %
%

by centrifugal acceleration of the fluid particles,

pAr(J2Cos p dx

The CorioU.s force is oriented normal to the flow direction through the m
passage and has no component in the direction of the passage axis. The $
increase in momentum of the stream flowing through the control surfaces
is

(m+ dm)(W+ dW) - mW

or

m

Equating the various force
in

f&Ati+
-Adpi --

2%

Use of the continuity equation

dW+Wdm.

terms with the change in momentum results

@ru2cosPdx=md W+Wdm (1)

m= PAW (2)

the equation of state

pi =pRT (3)

and the relation

in equation (1) leads to

[()]2 RT dpi Pi
1-:

()

2RT m do%
-z=

=~rco2cosj3 --- —-
Pi

Pi A ~

m2 R

00(
z

)
g+;g+~

%& 211’h
(5)

.

F.
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The static temperature T is determined by the rate at which internal
energy in the flowing gas stream is converted into kinetic energy, as
well as by the rate with which heat is added to or subtracted from the
gas stream. For high-velocity flow in which the conversion of internal
energy into kinetic energy becomes an important factor, it WO~d be Ure
appropriate to calculate with the total temperate) Uch iS ~ectly
connected with the rate of heat addition, thsn with the static tempera-
ture. ‘I!hisconversion canbe made with the help of the fo~owing
equation:

~2 ()

~2

x ~2T2

T’=T+q=T+ ?P:CP

The change frcm the static to the total temperate, however, complicates
equation (5] considerably. Gn the one hand, the flow velocities in the
passages are usually small enough to make the temperature change connected
with the conversion of internal into kinetic energy small. On the other
hand, the rate of heat addition to the coolant on its way through the
flow channel usually is not too weIl known and has to be esthated. For
these reasons, the static temperature is maintained in the following
calculations. It is assumed that the variation of the static temperature
along the coolant flow channel is known.

~ equation (5), the spectiic mss fl~ m~A, the internal pmpsure
pi, the radius r, the tangential.velocitY r~~ ad the cross-sectio~

area A are generally functions of the distance x from the channel

entrance measured along the channel axis. The temperature T may also
Vsxy along x.

A second expression including the same variables as functions of
the distance from the passage entrance can be obtatied from a considaa-
tion of the pressure drop through the porous wall when the pressure dis-
tribution along the outside of the passage is prescribed. The mass
velocity of the coolant e~ected through the porous WSU. at any location
multiplied.by the width of the porous portion of the channel wall meas-
ured in circumferential.dtiection equals the rate of change of the cool-
ant mass flow passing through the passage at th@Location; that is,

●

[6)

The quantity pV is the average mass-flow rate over the channel width
b. The negative sign appears in the left member of equation (6) when
the velocity is considered positive for flow leaving the channel through

. the porous wall. Reference 3 shows that the mass velocity of a gas
fluwing through a porous wall is connected with the difference in the
squares of the pressures acting on both sides of the wallj through the

d equation
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.

P: - P:
—=

t CI(~TPV)(PV) + C2 2RT(pV)2 (7) *

Values of Cl and C2 must be determined experimentally for each porous

material.

Equation (7) may be ~eferred to measurements at standard conditions
by transformation into (see ref. 4)

(8]

The parameters appearing on both sides of equation (8), when plotted on
log-log coordinates for several types of porous materials, indicate an
almost linear variation over a fatily wide range of flow for any of the
materials. As a consequence, equation (8) may be well approximated by

(9)

where K is the permeability of the material. On a log-log.plot of

P; - P:

()

Povo
2~

~ ~ # %atist pV(poV~pv}, the intercept of the curve for -

a given p-orousqaterial on the log pV[povo/pv) axis is the value of n

log K for that material.
*

This def~tion of K is similar, but not
identical, to that normally used. For the purpose of this calculation,
equation (9) is simplified to

pv = CK(P:- P:)n

by introduction of the parameter

CK .
●

The values of CK and n

(10)

are functions of the porous material; they

also vary slightly with the specific mass flow pV(poV~pv). The value

of CK is a function of the material permeability and thickness, and of

cooling-air properties based on porous-wall temperature.
.

Substitution
of equations (4) and (10) into equation (6) gives the desired relation:

-=

b
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g

(12)

Equations (5) aud (12) are two squations from which two unknown values
can be calculated..

Reduction to Dtiensionless Form

In order to make the results of calculationsmore generally appli-
cable, it is advantageous to change equations (5) and (12) to dimension-
less form. For this purpose, the following substitutions are made (the
dimensionless variables sre @enoted by Greek letters corresponding to
the English letters for the dtiension~ quantities, and the-const~nts by
English capital letters):

Pi
xi.—

Pi,r

Pe
Yr =—
e Pi$r

‘T ~T=—
r

a A=—
Ar

()
{

: r RTr
M =——

‘ijr y

‘Pi r
N“ =

()RTr :
r

N= ‘“M‘*

{M)
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“

It can be shown easily that the parameter M is the Mach number of the
flow at the passage inlet. The parameter N“ is essentially the square
root of the ratio of the centrifugal force to an inertia force.

.
This

can be seen from the following transformation:

The right-hand term is, in addition to the length ratio L/2rr, the ratio
;,

of the centrifugal force per unit fluid volume at the passage entrance
to the inertia force that would be necessa@to slow down the fluid par-
ticle from an initial velocity Wr to the velocity zero over a length
equal to the channel length L.

Use of these substitutions in equations (5), (10), and (12) gives
the following dimensionless equations:

—

(14)

where

CK,dim =
()P? r

:’1

n

():r
%

(16]

(17)

CALCULATION PROCEIXJRE

The two equations (5) and (12) or (14) and (16) can be used to
calculate two of the parameters that depend on x if the rest of the

.

.
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parameters and an appropriate set of boundary conditions are prescribed.
. Two problems are most frequently encountered in applying this analysis

to design calculations: (1} A passage of prescribed geometry isclosed
at one end and fed at the other end by gas of a prescribed state. The
pressure along the outside of the porous passage wall of prescribed
material (CK and n known) and the local distribution of the flow ejec- ‘

tion through the porous wall are prescribed as well. The local distribu-
tion of the permeability of the channel wall has to be determined in such

w
g a way that the required flow rate through this wall (for instance, to ob-
ul tain a desired wall temperature distribution) is obtained. (2) The passage

geometry as well as the permeability of the porous portion of the channel
walls of known material is prescribed. The cha?.melis again closed at
one end and fed at the other end with gas of a prescribed state. The
outside pressure distribution is known. The distribution of the local
flow rate through the porous wall has to be determined.

The first problem is the easier one to calculate, because, with
ti the local flow rate prescrfied, the mass flow within the channel may be

2
obtained from integration of equation (6]. Equation [5) or (14) then
can be used to calculate the internsl pressure distribution along the

y
ccl

passage, because all the other terms in either equation sre lmown, and
u equation (10) (or {15)) cam then be solved for the constants CK or

~, d~, tiich determine the reqvired local permeability of the porous

wall..

Case (2) makes it necesssryto solve equations (5) and (12] or (14)

. and (16] shmltaneously for the two unknowns pi or fii and m/A or

V, the internal pressure and the mass veloctty, respectively.

A simplification of the outlined calculation procedure, investigate
for assumed radial passages, considers only centrifugal and pressure
forces in the balance of forces acting on the control area. Equation (1)
reduces to .

and equation (14) reduces to

(18)

The numerical exsmples presented later h this report sze obtained for
an assumed linesr variation in cooling-air temperate; as a consequence}

. z slso varies linearly in the form
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With this expression for z inserted in equation (18), direct integra-
tion results in

()2 rr ~z
~nfii,s=~ ~a- 1 in (1.+aQ +~~

a
(19)

The dimensionless pressure fii,s in the passage is now independent of

the coolant
can be used

Ssmple

flow. The conditi&s under which the simplified procedure w
sre discussed later.

:

—
NuMEmML IwAMPms

calculations for each of the two problems previously discussed
were made for cooling-airpassages I and II.of the turbine blade shown
in figure 2. The parameters needed in the calculations are indicated in
the figure legend. They were chosen to correspond to conditions prevail-
ing in a test engine available at the NhCA Lewis laboratory for the test-
ing of turbtie blades. Passages I and XI were assumed to be radial pas-
ages (p = 0]. The cross-sectionalarea of passage II is assumed to
decrease Iinesrly along the blade span to a value at the tip @ich is
hdf that at tne root. That of passage Z is constant for all calculations
except one, the case where the effect of area variation on flow conditions
was investigated. For this case, two arbitrary passage area variations
to be discussed later were considered, in addition”to the case of constant
area. Poroloy wire cloth was selected as the-porous material for the
turbine blade skin, constituting the porous side of each passage. An
empirical equation supplied by the manufacturers of Poroloy (ref. 5) and
valid for flow rates between 0.0001 and 0.1 pound per second per square
inch gives the value n in

CK =

equation [10) as-5/8. ‘The expre=~ion -

wfll be used later to determine the permeability per unit thickness K[t
of the porous side”of passages I and II (see fig. 2).

The external.pressure variations along passages I and II are also
shuwn in figure 2. These spanwise pressure distributions were obtained
from calculated velocity and pressure distributions around the blade
periphery at three spanwise locations. The effective gas temperature
profile along the blade span shown in figure 2 trasdetermined experimen-
tally with uncooled blades of the same geometry-in a test engine. The
inlet cooling-air temperature was assumed as Tr = 640° R. A linear in-
crease of approximately 200° F in cool--air temperature through the

*-

●
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blade span was assumed arbitrarily. The friction factor f indicated
in figure 2 was obtained from the relation valid for turbulent flow
through a tube. It corresponds to a Reynolds number of about 2000 when
this parsmeter is based on the hydraulic diameter of the passage. Ac-
tually, the Reynolds number, and therefore the friction factor, wies
along the passage. This variation was neglected in the present
calculations.

The following dimensionless quantities were obtained from the pa-
rameters in figure 2; they are held fixed throughout the calculations:

f= 0.0475

‘r =1+ 0.328~

‘i-[== 2.569

N= 0.2916

Permeability Requtiements for Prescribed Flaw Ejection

The determination of the permeability of the porous waU necessary
to fuEiJl prescribed flow ejection distributions for the two passages.
of the blade shown in figure 2 wi31 be consid=ed first. The results
of these calculations are presented in figures 3 to 6. The two passq.ges
were chosen so that lami- bounds@-layer flow is expected along the
outside blade surface adjacent to one passsge [1) and turbulent flow
along the outside blede surface adjacent to the other passage [11) when
transition is estimated from the pressure distribution around the blade
periphery. A blade wall temperature of 600° F was prescribed. The
spanwise cooling-air-flowrate pV can be calculated from the data pre-
sented and from the condition that the blade temperature is constant over
the surface (ref. 4). The cooling-air-flow distribution and a knowledge
of b, the circumferentiallength of the porous section of the passage
at each spanwise position, permit the integration of equation (6) and
hence the determinantion of the distribution of the mass flow m thrwgh-
out the passage. After conversion to the dimensionless mass-flow pa-
rameter V, equation (14) can be solved for the dhens ionless internal
pressure distribution ni. For the integration of equation (14), the

cooling-air pressure at the entrance of the passage must be lmown. For
this calculation, the value of the ~nsiofiess =t~~ Pressure at
the root tie,r was assumed to be 0.95. FYmn the internal and external

dimensionless pressure ratios fii and Xe, respectively, the tie~ ion-

. less permeability parameter CK,d~ is obtained from E?qUatiOn (15).

This parameter is valid for any porous material for which the mass flow

.
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is describedby equation (12]. For Poroloy the desired permeability per
unit thickness is determined from the expression

resulting from use of equations (17) and (Ill).

Figure 3 shows, in dtiensionless form, the results of this calcula-
tion, namely, the internal mass-flow distribution v (which is nearly
linesr) and the internal pressure distribution xi as functions of the

dimensionless distance ~ = x/L for passage 1, whose porous wsll is
exposed to leminar external flow. The prescribed external pressure
distribution me is also shown once more for comparison. Figure 4 shows

the dimensionless permeability parameter “CK,dim,which is valid fOr any

porous material for which equation {10) holds, and the permeability dis-
tribution K/t required to satisfy the prescribed cooling-air ejection
rates through the porous Poroloy wall. A rapid reduction in blade per-
meability or a corresponding increase in waU_ thickness is required near
the lower quarter-span of the passage, a more gradgal permeability re-
duction or thickness increase to about the three-quarter-spanlocation,
and a nearly constant permeability or thickness in the region near the
blade tip. Such a permeability or thickness variation wiU be extremely
difficult to fabricate; and, in all probability, some sort of compromise
between prescribed wall temperature (and correspondingprescribed
coolant-flow ejection pV) and a more readily obtainable permeability or
thickness variation will be necessary. .

Avsriation of the parameter K/t as shown in figure 4 is also often
unfavorable with regard to stress, because it may mean heavier material
for the blade shell near the tip of the blade. It is easily understand-
able that the variation of the psmmeter K/t along the blade length be-
comes smaller when the pressure at the passage inlet is increased. ThiB
is shown in more detail in some later figures. The result of the simpli-
fied calculation procedure (eq. (19]) is shown in figure 3 as the dashed
line fii,s. It can be observed that the difference between the result

of the original calculation (the solid line fii)and the result of the

simplifid. procedure (the dashed line tiis] is very small under the as-
)

sumed parameters.

Passage II differs from passage I by the fact that the gas flow
around the blade is expected to produce a turbulent boundary layer adja-
cent to passage 11. Consequently, the coolant-flow ejection pV

.

..*

.-

.—.

.

.

—

—

.

.



NACA TN 3408 15

required to maintain a blade wall temperature of 6000 F is considerably
larger than for passage I. This distribution along the span of passege
11 was calculated by the method discussed in reference 4 and is shown in
figure 5. The cross-sectional srea of passage II was assumed to decrease
linearly from blade root to tip; its value at the tip was half its value
at the root. In algebraic form, the dimensionless srea of passage 11
may be expressed as a.l- 0.5E. The calculation proceeded as in the
previously described case. The results are plott&l in figures 5 and 6.
Dimensionless distributions of external pressure me, internal pressure

fii,and mass velocity v are shown as functions of the dimensionless

distance ~ = x/L in figure 5. The variatiou of the cross-sectional
area of the passage is reflected in the distribution of mass velocity
m[A. The dimensionless permeability parameter CK,dim and the distri-

bution of K/t are presented in figure 6. The”variation of these pa-
rameters over the blade height is qualitatively the same as for passage
I. The required permeabilities, however, are considerably larger for
passage II in order to accormmdate the larger coolant-flow rates.

The dimensionless internal pressure distribution fii,s calculated

by the simplified equation is inserted in figure 5 as the dashed line.
The difference between the solid line pressure distribution fii obtained

by use of equation (14) and the dashed line in figure 5 is larger than
it was for passage I (fig. 3). Since the calculation is considerably

.* simplified by use of equation (18) instead of equation (14), it is im-
portsnt to know when this simplification is permissible. This wiXL be
discussed in detail later.

.

Flow Ejection Distribution for Prescribed Permeability

The determination “ofthe flow ejection distribution for a prescribed
porous-wall permeability requires the simultaneous solution of equations
(14) and (16). The two boundary conditions that must be ful-filleaapply
at opposite ends of’the passage; that iS$ the dfie~io~ess ~t~~
pressure at the passage entrance fii,r must equal unity, and the dimen-

sionless mass velocity v must reduce to zero at the passage tip. More-
over, xi must exceed (or in the limiting casej eqti) the ~ensiofiess

external pressure tie everywhere along the passage to ensure flow through

the wall in the proper tiection. For a prescribed distribution of the
outside pressure fie,a unique p distribution that reduces to zero at

the passage tip can be found. ~ev~, this distribution can O- be
found by a trial-and-error procedure. It is necessary to assume values

of Pi,r ~d (m/A)r at the passage entrance, to solve the qmtions
.

numerically, and to check the v~ue of y at the passage tip. In gen-
eral, several trials will be requtied before the value v = O at the

. tip is obtained.
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Calculations were made for the determination of the flow ejection
distributions in passage I for three assumed values of the internal pres-
sure at the passage entrance pi,r (and hence for three distributions of

‘e = pe/pi,r) for a passage with a porous.w~l whose permeab~ity iS

cJf = 10-5 ft1/2/(sec)(lb1/4). Uniform porous-wall thickness and constant

passage area (a = 1) were assmned. The external pressure distributions
me, the internal pressure distributions ni, and the internal flaw dis-

tributions w are shown in figure 7. Also shown, as a dashed curve, is
the internal pressure distribution fii,s,which includes rotational ef-

fects only and was calculatedly use of equation [19). Only slight varia-
tions in the internal pressure distribution fii result from variation

of the pressure with which the cooling air enters the blade root. More-
over, the internal pressure distribution fii,s obtained by use of equa-

tion (18) is only slightly different from the other fii distributions

obtained by use of equation (14). For this blade passsge, therefore, the
simplified procedure would give practically the same results as the more
complicated solution involvi~ equation (14]. The saving in time is
especially lerge in this case, since no trial-and-errorprocedure has to
be employed when equation {18) is used.

The distribution of the air ejection rate pV is shown in figure 8.
As expected, the pV values increase as ICe,r decreases. Also, the

ratio of the pV value at any location to the value at the passage en-
trance changes less along the blade length with increasing inlet pressure.
The pV distribution that results in a constant blade sh&U. temperature
is nearly constant spanwise, as can be seen from figure 3. A constant
value of K/t for the porous wall will therefore lead to a blade tem-
perature that decreases from root to tip. To make.this decrease small,
the cooling-air inlet pressure at the blade root should be made as lerge .
as possible.

Figure 8 can be used to estimate how much more cooling air is re-
quired for passage I when the porous waXl has constant permeability than
when the permeability varies spanwise so as to give the constant or nearly
constant coolant-flow rate pV necessary to maintain a constant spanwise
wall temperature. For purpose of comparison, it may be assumed that the
waU permeability and inlet pressure at the passage entrance are adjusted
so that the coolant flow pV (and hence also the wall temperature] at the
base is the same for both cases. It is then seen that, for the cases of
a constant wall permeability with fie,r= 0.8 and 0.6, the corresponding

excess use of cooling ah over the ideal case of a constant spanwise pV
is approximately 77 percent and 45 percent, respectively. For the limlt-
ing case where fie,r= 1.0, the coolant flow pV is zero at the blade

root, and the condition of a constant spanwise coolant flow pV reduces
to the case of an impermeable blade wall.
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A series of calculationswas made for the same passagej the same
wall permeability, the same external pressure distribution corresponding
to Yre,r = 0.8, but for passages whose flow areas increase (a =1+ 0.5 5),

are constant (a = 1), and decrease (a = 1 - 0.5 ~ ) in flow direction,
respectively. Figures 9 and 10 present the results of these calculations.
Figure 9 shows very little variation in the various fii distributions

(including xi,s}, in spite of rather mrked variations in the mass ve-

locity distributions p. Accordingly, the pV distributions indicate
(fig. 10) that passage flow-area variatic5nhas an almost negligible in-
fluence on the flow e~ection rates.

From the fact that the xi curves in figure 9 ace all in reasonably

close agreement with the tii,s c-e resulting from the simplified cal-

culation (eq. (19)), it may be deduced that changes in the variation of
cross-sectionalarea do not cause appreciable differences between the
pressure distributions obtained by the two calculation procedures. It
can be concluded, therefore, that the rate of coolant flow, or Mach num-
ber, is the determining peremeter in this regard.

Examination of equations (14) and (18) reveals that the two solutions
are identical for the case of zero coolant flow @ = O); and, hence, for
small Mach numbers M good agreement between the solutions for xi and

~i,s (Ws. (14) and (18), respectively) is expected. That this is the&
case for the present calculations can be seen from figures 3, 5, 7, and
9. In figure 3, the Mach number is very small (M = 0.059), and the

- solutions for z~ and tii,s are practictiy identical. ti figure 7,

the solutions for K.f are for Wch numbers M of 0.135, 0.185, and
0.228; the corresponding maximum percentage differences between xi and

fi~ - Yci s
fli,s are x100%= 0.9, 1.8, and 3.1 percent, respectively. h

Xi,s
figure 9, where all solutions are for an essentially constant Mach number
of 0.185, the msxm percentage difference between YKi and fii,s is

only 2.1 percent. The solution for YTi presented in figure 5, however,

represents a comparatively high coolant-flow rate with a Mach number of
0.350, and the maxhum percentage difference between ii and zi,~ is

8.6 percent, an appreciable amount. From these results, it appears that
the use of the simplified solution for the internal pressure fii,s given

by equation (19) results in an error of order not more than approximately
2 percent from the exact solution, as lo& as the coolant-flow Mach num-
ber does not greatly exceed 0.2.

.

.
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SUMMARY OF RESULTS

A one-dimensionalmethod that permits the calculation of local per-
meability for prescribed coolant flow (or the solution of the inverse
problem) for a rotating passage with varying cross section and partis21y
porous walls was developed. A knowledge oflhe temperature distribution
of the cooling air inside the passage, the outside pressure along the
passage, and the passage geometry is required. Solutions to the first
problem were obtaimed by solving independent~ya pair of first-order dif-
ferential equations. For the inverse probl~m, a simultaneous solution
of a pair of equations is required; a trial-and-errorprocedure has to
be applied in this case.

Solutions to both problems were obtained for several blind radial
passages in a transpiration-cooledturbine rotor bla&. The results of
this investigationare as follows:

—

1. For prescribed coolant-flow ejection rates necessary to maintain
a constant porous-wall temperature for both a constant-areapassage ex-
posed to external laminar-flow conditions and a variable-area passage

—

exposed to external turbulent-flow conditions, considerable reduction in
permeability or increase in thickness is required from blade root to
blade tip. In either case, a rapid reduction in permeability or increase
in thickness is required nesr the root of the blade; the reduction tends
to level off considerablybeyond this point. .

2. Permeability or thickness variations like those necessary to
maintain a constant wall temperature throughout appear extremely diffi-
cult to obtain with present-day materials} and some compromises between

.

prescribed wall temperature and a more readily obtainable permeability
or thickness distributionwill.undoubtedly be necessary. These variations
will probably require some increase in she~. thickness near the tip of
the blade and, as a consequence, they might-be unfavorable from stress
considerations.

3. For prescribed loc&lly constant permeability, the mass-flow e~ec-
tion rate increases from blade root to blade tip. As the passage inlet
pressure is increased, the relative increase in flow ejection rate alo~
the blade height becomes less. Consequently, a large inlet pressure wfll
result in a more nearly untiorm flow ejection rate.

.

4. For prescribed locally constant permeability, variations in pas-
sage cross-sectionalarea had practically no influence on flow ejection
rates. —

5. The internal pressure distribution of cooling air in a rotating
passage can be approximated by balancing the centrifugalforce due to

.

rotation with the pressure forces only. This approximation can be
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applied to the solution of both t~es of problems discussed above. For
many cases of practical_import~ce, the simplified differential equation
can be integrated directly to obtain the pressure distribution, thus
eltiinating the numerical process necessary for the complete solution.
The complete solution and the approxhate solution converge for zero
coolant flow. The results presented in this report indicate that the
complete solution for the internal pressure is well approximated by the
simplified solution, for cooling-air Mach numbers at the passage entrance
that do not greatly exceed 0.2. The maximum difference between the com-
plete and approximate solutions is then of the order of 2 percent.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, November 18, 1954
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Figure3. - Prescribedexternalpressuresnd coolant-flowejec-
tiondistributionssad resultinginternalpressureand coolant
maas-velocitydistributionsfor passageI.
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Figure4. - Permeabilitydistributionrequiredto satisfypre-
scribedcoolant-flowejectiondistributionfcm passageI.



24 NAC!ATN 3408

1.4

/

/

‘ii = PL pi,r
/

0
/

1.2 /

1.0

.8

●6

+\

.4

~

.2

0 .2 .4 .6 .8 1.0

I

.4

.2

Distance, ~ = x/L

Figure 5. - Fl%scribedexternalpressureand coolant-floweJec-
tiondistributionsand resulting internalpressure and maas-
velocitydistributionsfor passage II.

.

●

.

.



m 1

Permaabildty per unit thickuea6, K/t,
(ft)o”s

(lb)O-4 (SeC)1”6

3529

Dinmnsiorilefm permabi~ty, c~,dim

N)
(n



1.6

1.4

L1. z

.d’

.s

m
..4

.2

I I I I I I I I I

o .2 .4 .6 .8 1,,0 0 .s 1.0
Dlstmae, E . +/L

I I I I I I I I 1 I I I I I I I

.;

I
.4 .6 .8 1.0 0 .9 .4 .6

(a) ExtOrnal prcmure. (b’) IOtelmnl ~0S6U2W . (c) mm tilonlm.

w, 7. . Effeot of Vuiatim of passage inlet pressure m intemml pmaaure and mse-velmlty dista.lbuticm for p#mmge I with

pusc.ribed omatant wall p— bilfty ~ = 10-5 ft~2/(me) (lbl/4) .

1



NACA TN 3408 27

.

●

.

.

●5

>- “3
a

.1

0

/

‘ie,r /= pe,r pi~r

.6

A
/

/

.8/ /

/

A
.2 .4 .6 .8 1.0

Distance, ~ = x/L

Figure 8. - Coolant-flow ejection distributions for passage I
for vsrious inlet pressures and prescribed permeability

CK = 10‘5 ftl/2/(sec)(lbl/4).



.0 o .’2 .4 .6 .8 1,
DIBtmae, c - X/L

,0 0 .2 .4 .s .8 1.0

(a) %temal pemur.. (b) Internal pressure. (0) !18S8 mlmityc

FiEurO 9. - Effect of paannua area WWiatlOn m internal pmsaure and m.ms-veloaity clistmih!?km for pxmrlbed extmmal rmeaaure

distritmthu and wall parmoabili~ ~ - 10-5 ft~2/(aec )(lbl/4). Ect8ti P30BW ratio, Te, r - Pe, J9i, r - o.a.



NACA TN 3408 29

.

.

.

.

g

-u

.12 ,fl I , 1

.08
0 .2 ●4 .6 .8 1.0

Distance, ~ = x/L

Figure 10. - Coolant-flow ejection distributions for passage
with prescribed area variatfonsy external pressure distribu-

tion, and wall.permeability C!K= 10-5 ftl/2/(sec)(lbl/4).
External pressure ratio, fie,r= pe,~pf,r = 0.8.

NACA-Lan@ey -3-10-55 - SW


